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Overview	

•  The	inversion	system	
•  Synthe=c	data	inversion	
•  Real	data	inversion	
•  Uncertainty	in	atmospheric	transport	
•  Summary	



y = Kx +εy 
K:  transport	operator	
y :  observa=ons	
x :  state	vector	to	be		
					 	op=mized	

	(biosphere-
	atmosphere	
	exchange	fluxes)	
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How	does	an	atmospheric	network	“see”	fluxes	?	

Stochas(c	Time	Inverted		
Lagrangian	Transport	(STILT)	
	
•  Ensemble	of	par=cles	
released	at	measurement	
loca=ons	

•  Time	reversed	
• Par=cles	driven	by	wind	+		
turbulent	process	

•  Footprint	calcula=on	
• NRT	possible	(ECMWF	
forecasts)	
	
=>	Footprints	available	
through	ICOS	CP	



VPRM	prior	-	op=miza=on	

Vegeta=on	Photosynthesis	Respira=on	Model	(VPRM)	
[Pathmathevan	et	al.,	2008]	

( )
( ) ( ) ( )scale scale scaleT P W

1
LSWI EVPAR T I L

P
S

R
, V

A
WI E I= ⋅ ⋅ ⋅ ⋅ ⋅

+ 0

λ
PAR

NEE = GEE + R 

SYNMAP	land	cover	
[Jung	et	al.,	2006]	

Eddy Cov. data 

Ini=al	op=miza=on	of	parameters	
against	Eddy	Cov.	α,	β,	λ,	and	PAR0	

= ⋅ +Tα β

ECMWF,	NCEP,	WRF	
or	site	measurements	

MODIS surface reflectance 
8 day, 500 m 



•  Op=mizing	4	parameters	
for	each	of	6	vegeta=on	
types		
(30	parameters)	

•  Temporal	data	coverage	
ma\ers		
=>	data	density	weigh=ng	

VPRM	prior	-	op=miza=on	

Implementation of MODIS 
V06 NRT data for VPRM 

up to current week 



Fossil	fuel	prior	fluxes	

•  EDGAR	v4.3	at	0.1º	

•  CO2	and	CH4	(and	CO)	
•  IPCC	category	and	fuel	type	

differen=a=on	

•  Time	factors	applied	to	
create	hourly	temporal	
resolu=on	

•  Interannual	varia=ons	
scaled	according	to	BP	
energy	sta=s=cs	at	na=onal	
level	

•  Extrapola=on	to	1-2	years	
ader	BP	sta=s=cs	
=>	current	year	available	



TM3-STILT	–	two	step	inversion	
	
•  Input	:	Atmospheric	

observa=ons,	prior	fluxes	
(biospheric,	ocean,	fossil	
fuel)	

•  TM3	global	inversion	5°	x	4°	
•  STILT	regional	inversion	

0.25°	x	0.25°	
•  State	space:	0.5°	resolu=on,	

3hourly	flux	op=miza=on	

Jena	regional	inversion	system	

Rödenbeck	et	al.,	2009	

NRT not possible (global data 
for previous year avail. June) 

NRT possible  
(if ICOS data available) 



S C M T UP 
1.5 2.5 1.5 1.5 4 

S:	Near	shore	
C:	Con=nental	(surface)	
M:	Mountain	
T:		Tall	tower	
UP:	Urban	polluted		

CO2	Model-data	mismatch	error	in	ppm	
(for	weekly	=me	scales)	

•  16	atmospheric	sta=ons	(2007)	(Con=nuous	
measurements	and	flask	sample	analysis)	

•  Day=me	11-16	local	(mountain:	23-04)	

Inversion	setup	
Atmospheric	observa=ons:	

Prior	error	structure	(derived	from	differences	prior	fluxes	–	flux	observa=ons):	
•  Diagonal:	2.3	μmoles/m2/s	(daily	fluxes,	0.5x0.5	°	lat-lon)	
•  error	correla=ons:	30	days,	100	km		

	

=>	error	infla=on	needed	to	obtain	consistency	with		
global	inversions	
0.3	GtC/yr	for	annual	and	domain	wide	aggregated	prior	error	

•  B1	case:	Error	infla=on	(scaling	of	covariance	matrix)	
•  S1	case:	Error	infla=on	by	adding	a	bias	term	(constant	in	=me,	respira=on	

shape)	



Synthe=c	data	inversion	

Pseudo	
observa=ons	

generated	using	
BIOME-BGC	as	

“truth”	



Pseudo	data	inversion	–	EU-scale	C	budget	

•  Successfully	retrieved	
fluxes	at	monthly	and	
annual	scales	

•  Case	S1	(with	bias	
component)	results	in	
lower	posterior	
uncertain=es	

Kountouris	et	al.,	2016a	ACPD	



Pseudo	data	inversion	–	Country-scale	C	budget	

•  Successfully	retrieved	
fluxes	at	monthly	and	
na=onal	scales	
	

•  Reduc=on	in	
Uncertain=es	(prior	->	
posterior)	larger	for	
countries	with	more	
observa=ons	

Kountouris	et	al.,	2016a	ACPD	
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Small	scale	structure:	
vegeta=on	coverage,	
radia=on,	temperature	
(a	priori)	
	
	
	
Larger	scale	
correc=ons	from	
atmospheric	constrain		
	
	
	
	
Innova=on:	
posterior	–	prior	

Real	data	inversion	2007	

Daily	averaged	flux	es=mates	in	gC	d-1	m-2		

Kountouris	et	al.,	
2016b	ACPD	



Domain-wide	sink	ranges	between	0.23	-	0.38	GtC	y-1		
	

Kountouris	et	al.,	2016b	ACPD	

Real	data	inversion	2007:	Domain-wide	C-budget	
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Real	data	inversion	2007:	Valida=on	

Extrac=ng	posterior	fluxes	at	Eddy	Covariance	Flux	sites	
comparison	to	independent	flux	observa=ons		
(case	B2,	BIOME-BGC	prior	fluxes	not	dependent	on	flux	observa=ons)	

Kountouris	et	al.,	2016b	ACPD	
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Impact	of	Uncertainty	in	Ver=cal	Mixing	

Conceptual	model	
•  Diurnal	cycle	CO2	
fluxes	

•  Diurnal	cycle	
mixing	height	

•  Subsidence	

Correct	(true)	MH	
Biased	(model)	MH	



Impact	of	Uncertainty	in	Ver=cal	Mixing	

“assimila=ng”	mixing	heights	
(example:	9	Sep.	2009,	12:00)	
•  derived	from	IGRA	data	

(radiosonde	profiles)	
•  using	KED	(Kriging	with	

external	drid,		
Drid	term	WRF-MH)	
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Fig. 4. Example of the KED estimation. Shown are the MHs produced by the WRF YSU simulation (a) for

each 10 km2 pixel of the simulation domain at September 9, 2009, 12 UTC used as external drift (background

field) in the KED estimation. The maps in b,c,d (left column) show estimation results neglecting uncertainty

of observed MH in the KED estimation and the right column the results when accounting for this uncertainty.

The KED optimized MHs are shown in row (b). The innovation for each pixel is computed as the difference of

optimized MH and background field (row c). Also shown in row (d) is the resulting KED error variance. Less

error variance is observed near the locations of radiosondes.
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[Kretschmer	et	al.,	2013	&	2014]	

Time	of	the	day	

CO
2	[
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m
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Average	diurnal	cycle	CBW	Sep.	2009	



Using	addi=onal	data	streams:	PBLH	

DWD	Ceilometer	network	
•  80	+	ceilometers	
•  Nearby	ICOS	

atmosphere	sta=ons	
•  Co-located	surface	

sta=ons	
•  Valida=on	of	

ceilometer	PBLH	
against	radiosonde	
PBLH	

•  ECMWF	PBLH	(7	km	
res.)	as	„transfer	
standard“	
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Ceilometer	vs.	ECMWF	
•  First	of	3	candidate	

PBLH	chosen	
•  Only	QC	flag	>1	
•  15	s	data	->	hourly		
•  Rain	excluded	

(weather	data	from	
co-located	surface	
sta=on)	

•  Only	10:00-14:00	

•  Up	to	50%		
explained	variance	

Using	addi=onal	data	streams:	PBLH	



Using	addi=onal	data	streams:	PBLH	

Radiosonde	vs.	ECMWF	
•  Valida=on	of	transfer	

standard	

•  around	50%	
explained	variance	



Using	addi=onal	data	streams:	PBLH	

ECMWF	vs.	ECMWF	
•  Radiosonde	and	

ceilometer	loca=ons	
80-140	km	apart	

•  around	70%		
explained	variance	



Using	addi=onal	data	streams:	PBLH	

Ceilometer	vs.	
Radiosonde	

•  20-40%		
explained	variance		



•  Regular	ver=cal	profiles	of	GHGs	from	airliners	

Using	addi=onal	data	streams:	regular	profiles	



Summary		

•  Data	driven	approach	from	local	to	con=nental-scale	to	infer	fluxes	from	the	
land	biosphere	

•  Flux	es=mates	can	be	successfully	retrieved	down	to	country	and	monthly	
scales	

•  Spa=ally	resolved	flux	es=mates	poten=ally	affected	by	assumed	emissions	
=>	fossil	CO2	prior	at	higher	resolu=on	for	filtering	

•  up-to-date	inversion	products	possible	with	near-real	=me	data	

•  U=lizing	mixing	heights	from	ceilometers	seems	possible	

•  Outlook:	H2020	proposal	VERIFY	(Observa=on-based	system	for		
monitoring	and	verifica=on	of	greenhouse	gases)	

•  Mul=ple	emission	inventories,	Mul=ple	NEE	flux	priors	

•  Valida=on	against	IAGOS	profiles	

•  High-res.	ffCO2	simula=ons	for	dense	observa=ons	within	hotspot	region	


