

Central <u>An</u>alytical

> **ICOS** Central Analytical Laboratory

¹⁴C and other tracers for fossil fuel CO₂

Samuel Hammer and Ingeborg Levin

Institut für Umweltphysik, Heidelberg University

ICOS-D Wissenschaftliche Versammlung, Offenbach

für Verkehr und digitale Infrastruktur

Bundesministerium

23.-24. März, 2017

Bundesministerium für Bildung und Forschung

ICOS Analytical 14C signal at "class 1" stations

RINGO Task 1.2

Task 1.2: Developing ICOS RI readiness to provide information on fossil fuel emissions

This task aims for a:

- Critical assessment of the added value of integrated ¹⁴CO₂ samples for the determination of the *national total ffCO₂* emissions
- Dedicated sampling strategy for the *regional ffCO*₂ signal, optimizing the benefit of ¹⁴CO₂ measurements for (verification and) potential improvement of existing ffCO₂ emissions inventories

up- and downwind of sources

¹⁴CO₂ and other tracers will be sampled/measured upand downwind of an emission area if they are connected by one trajectory.

Central Analytical Laboratory

ICO₂

test regions:

- Paris
- Rotterdam
- Rhine valley

Partner: LSCE, CP, Uni Groningen & Wageningen **RINGO**

CO₂ daytime flux map in summer

Central Analytical Laboratory

ICOS

Do we have sufficient signal in the Rhine valley?

Observation-based system for monitoring and verification of greenhouse gases (CO₂, CH₄, N₂O)

Verify

HORIZ

2020

Central

Analytical Laboratory

Verify structure

Central

Analytical Laboratory

THE FRAMEWORK PROGRAMME FOR RESEARCH AND INNOVATIO

HORIZ

2020

ffCO₂ emissions in Verify

Task 2.1: Bottom-up emission estimates for anthropogenic CO₂ and co-emitted tracers

Task 2.2: Assessment of atmospheric CO/ffCO₂ and NO₂/ffCO₂ ratios and independent ¹⁴CO₂-based ffCO₂ emission estimates

Task 2.3: Annual to weekly budgets and trends of fossil CO₂ emissions at the national scale across Europe using CO and NO_x satellite measurements

Task 2.4: Exploring the potential of new data, upcoming instruments, and new methods to improve the pre-operational ffCO₂ estimation system

Tracers for ffCO₂

To increase the temporal resolution of $ffCO_2$ estimates co-emitted/consumed tracers like CO, NO_x or APO are used

APO= Atmo. potential Oxygen

ICO₂

$APO = O_2 + (-1.1/0.2095) \times (350-CO_2)$

Using the emission ratio R between the co-emitted tracer and $\rm ffCO_2$ we can estimate $\rm ffCO_2$ based on the continuously measured proxy species

CO based $ffCO_2 = \frac{CO_{obs} - CO_{bg}}{R_{CO:CO_2}}$ APO based $ffCO_2 = \frac{APO - APO_{bg}}{R_{APO:CO_2}}$

APO has the advantage that the ratio R for typical combustion processes varies less than for CO.

 $R_{CO/CO2} = 5$ to 25 ppb/ppm $R_{APO/CO2} = -1.3$ to -1.4 per meg/ppm

 RINGO will critically assess the added value of integrated ¹⁴CO₂ samples

Summary

- A methodology to monitor emission hot-spots using ¹⁴CO₂ will be developed in RINGO
- Co-emitted/consumed tracers like CO, NO₂ and APO can improve the temporal resolution of the ffCO₂ estimate
- A solid understanding of tracer/ffCO₂ ratios are key to derive reliable ffCO₂ estimates
- Collaboration with emission-modellers suggested