

Biogeochemical process studies using VOS-based trace gas measurements in the Baltic Sea

Introduction

- Instrumentation
- History
- Basics
- Results and Process
 Studies
 - Overview
 - Case studies
- Related activities
 - PINBAL
 - The POSEC study

Outlook

Setup for the next decade

The "BALTIC VOS"

Voluntary observing ship M/S Finnmaid, run by Finnlines, equipped with systems for continuous trace gas measurements

History (IOW's view)

- Amendment to the Alg@line Project
- Trace Gas Analytical Setup
 - Originally installed on M/S Finnpartner in 2003
 - Completely renewed on M/S Finnmaid in 2007/2008
- Trace Gas Surface Data
 - pCO₂ since 2003
 - O₂ since 2003 (with interruptions)
 - pCH₄ since late 2009
- Since 2012 partly supported as German contribution to ICOS

IOW Ferrybox System

INTEGRATED

BSERVATIO

- Greenhouse gas measurements: pCO₂ and CH₄
- Installed alongside preexisting Finnish Alg@line system (Real time algal monitoring in the Baltic Sea)

NTRODUCTION

Spatial and temporal data coverage

- Good spatial coverage of the central Baltic Sea
- High repeat frequency: twice every three days
- 6 years of data (CH₄)
 800 (valid) transects,
 - 728 along main routes

Rationale of Trace Gas measurements in the Baltic

Carbon dioxide system

As a key to quantify biogeochemical cycles

- Affected directly by "ocean acidification"
- Affected indirectly by eutrophication and climate change, including changes in run-off etc.
- Direct indicator for carbon uptake and net primary production
- Links eutrophication and hypoxia
- Methane cycle
 - Ubiquitous in Baltic Sea sediments
 - Enhanced concentration in anoxic water bodies
 - Affected by eutrophication and climate warming
 - Main marine sources in shelf and marginal seas
 - Baltic as an ideal testfield because of its unique structure
- Excellent boundary conditions (models and long-term data series)

Methane in the Baltic Sea

Modified from Schmale et al., (2010) Distribution of methane in the water column of the Baltic Sea.

DATA OVERVIEW

February 1st to 2nd 2014

One transect:

February 1st to 2nd 2014

EIBNIZ INSTITUTE FOR

TIC SEA RESEARCH

One transect:

February 1st to 2nd 2014

SEA RESEARCH

6

5

15

Wanninkhof et al., (2009) Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing.

20

longitude (deg E)

25

10

C

15

20

longitude (deg E)

25

25

Meteorological data curtesy of Ulf Gräwe, IOW

3

2

0

15

20

longitude (deg E)

Surface pCO_2 , all data 2010 to 2015 along main transect

Gülzow et al. (2013) One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere. 12

EXAMPLE 1:

CONSTRAINTS ON THE ANNUAL CYCLE OF NET PRIMARY PRODUCTION

$$\Delta pCO_2 \xrightarrow{alkalinity} \Delta C_T$$

 C_T - total CO₂: CO₂ + H₂CO₃ + HCO₃⁻ + CO₃²⁻

Biogeochemical phases:

- 1. Spring "nitrate" bloom
- 2. "Post-nitrate" bloom
- 3. "Blue water" period
- 4. Mid/summer nitrogen fixation
- 5. Vertical mixing

Productive Phases:

[hm ol/L]

20

Spring Bloom, Post Spring Phase, summer cyanobacterial bloom

Calculation of changes in C_T from cont. pCO₂ measurements and alkalinity.

Correction for to the counteraction of CO_2 uptake by ASE during undersaturation by use of O_2 as a ASE tracer, and carbon uptake used for build up of biomass

Allows for calculation of net production (carbon uptake)

Allows assessment of C/N/P stoichiometry

4th ICOS annual meeting; Kiel, May 2016

Spring bloom (1):

Continuous decrease of total CO_2 despite uptake of CO_2 from the atmosphere.

=>

Start of the spring bloom coincides with the increase of temperature.

The temperature as such does not trigger the start of the spring bloom.

Control by solar radiation in combination with low mixing depth (radiation dose)

Post Spring bloom (2):

Continuation of net production after nitrate depletion

Nitrate usually completely depleted by mid-April

Base for theory of N-fixation at cold temperatures, and debate on potential missing N-source

=>

POSEC study and pending DFG proposal

Summer cyanobacterial bloom (4):

CT depletion (organic matter production) shows strong correlation to the increase of T

Combination of irradiation and low mixing depth control the dynamics biomass production !

Production rates correlate with the warming rate, both depend on radiation efficiency that increases at low mixing.

=> Improved parameterization of onset in biogeochemical models

uptake / release [mol m⁻² yr⁻¹]

BONUS PINBAL Development of a spectrophotometric **p**H measurement system for monitor**in**g in the **Bal**tic Sea

4th ICOS annual meeting; Kiel, May 2016

EXTREMES 1:

EUTROPHICATION EASTERN GULF OF FINLAND, INFLUENCE OF RIVER NEVA, SUMMER 2014

PRODUCTIVITY IN THE BALTIC SEA 24

EXAMPLE 2:

UPWELLING INDUCED TRACE GAS SURFACE SUPERATION

4th ICOS annual meeting; Kiel, May 2016

Summertime upwelling around Gotland

- Favorable wind forcing produces coastal upwelling events lasting days to weeks in the Baltic Sea
- In summertime upwelling transports cold water rich in methane and CO₂ from beneath the thermocline into the surface mixed layer

Adapted from Fennel et al., et al., (2010) Transient upwelling in the central Baltic Sea.

EXTREMES 2: UPWELLING INDUCED SURFACE SUPERATION

latitude

Upwelling: northwestern tip of Gotland, October 2009

²² IMPORTANCE OF UPWELLING IN THE CENTRAL BALTIC

Temporal development of upwelling indicators

August 9th, 2014

August 22nd, 2014 August 29th, 2014

Different relaxation of T, CH_4 , pCO_2 , O_2 to allow for better ASE param. ????

How does interannual variability of upwelling intensity influence annual methane flux?

Daily temperature data derived from Baltic Sea model data, curtesy of Ulf Gräwe (IOW) Gräwe, U., et al., Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 92, 56–68 (2015).

Inter-annual variability of upwelling

Daily temperature data derived from Baltic Sea model data, curtesy of Ulf Gräwe (IOW) Gräwe, U., et al., Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas. Ocean Model. 92, 56–68 (2015). 31

Publications

- Identification and quantification of plankton bloom events in the Baltic Sea by continuous pCO₂ and chlorophyll a measurements on a cargo ship. Journal of Marine Systems 59: 238-248, (2006). Schneider et al., with S. Kaitala and P. Maunula.
- A new method for continuous measurements of O_2 in surface water in combination with pCO₂ measurements: Implications for gas phase equilibration. Mar. Chem., 103, 163 -171, (2007). Schneider et al.
- The annual cycle of carbon dioxide and parameters influencing the air-sea carbon exchange in the Baltic Proper. J. Mar. Sys., 74, 381 394, (2008). Schneider et al.
- A nitrogen fixation estimate for the Baltic Sea based on continuous pCO₂ measurements on a cargo ship and total nitrogen data. Continental Shelf Research 29: 1535-1540, (2009). Schneider et al., with S. Kaitala and M. Raateoja.
- Inter-annual and seasonal variations in the air-sea CO₂ balance in the central Baltic Sea and the Kattegat. Cont. Shelf Res., 30, 1511 1521, (2010). Wesslander et al., with Schneider.
- Processes regulating pCO_2 in the surface waters of the central eastern Gotland Sea: a model study. Oceanologia, 53, 745 770, (2011). Kusnetzov et al., with Schneider.
- A new method for continuous measurement of methane and carbon dioxide in surface waters using off-axis integrated cavity output spectroscopy (ICOS): An example from the Baltic Sea. Limnology Oceanography Methods, 9, 168-174, (2011). Gülzow et al., with Rehder and Schneider.
- One year of continuous measurements constraining methane emissions from the Baltic Sea to the atmosphere using a ship of opportunity. Biogeosciences 10, 81-99, doi:10.5194/bg-10-81-2013, (2013). Gülzow et al., with Rehder.
- Biogeochemical Control of the Coupled CO₂-O₂ System of the Baltic Sea: A Review of the Results of Baltic-C. AMBIO 02/2014; 43(1):49-59, (2014). Omstedt et al., with Schneider.
- Control of the mid-summer net community production and nitrogen fixation in the central Baltic Sea: An approach based on pCO₂ measurements on a cargo ship, Journal of Marine Systems, (2014). Schneider et al.
- Detecting sinks and sources of CO₂ and CH₄ by ferrybox-based measurements in the Baltic Sea: Three case studies.
 J. Mar. Sys., Doi:10.1016/j.jmarsys.2014.03.014, (2014). Schneider et al., with Gülzow and Rehder.
- Characteristics of the spring/summer production in the Mecklenburg Bight (Baltic Sea) as revealed by long-term pCO2 data, Oceanologia 57, 375—385 (2015), Schneider et al.

Summary and Outlook

- IOW ferrybox system provides:
 - Good temporal and spatial sea surface concentration data
 - Multi-year observations
- Soon to be upgraded for additional parameters:
 - pCO₂ (LI-COR)
 - O₂ (PreSens)
 - CH₄ and secondary pCO₂
 (Los Gatos Research)
- δ¹³C-CO₂ (PICARRO)
- N₂O + CO (LGR)

- pH (Bonus PINBAL project)
- Atmospheric concentrations + weather station

