Estimating terrestrial carbon fluxes in an atmospheric perspective – combining constraints from Eddy Covariance and mixing ratio observations

Kountouris P., Gerbig C., Koch T., Rödenbeck C., Karstens U.

Bundesministerium für Bildung und Forschung

ICOS-D annual meeting Kiel, 18-20 May

motivation

- Large dispersion between models output
- Large uncertainties in climate carbon cycle projection
- Need to understand the processes

Estimating the carbon budget

Bottom up approach

- Upscale EC measurements, representativity < 1km²
- Biosphere models optimized with EC data 0.27±0.16 GtCy⁻¹ for 2000–2005, [Schulze et al., 2009]

Top down

• In situ

0.44±0.45 GtCy⁻¹ for 2001–2004, [Peylin et al., 2013]

• Satellite

1.03±0.47 GtCy⁻¹ for 2003-2010, [Reuter et al., 2014]

Atmospheric inversions

Aug 1 2007, 00:00 GMT (NIGHT)

Vegetation Photosynthesis Respiration Model (VPRM) [Pathmathevan et al., 2008]

Initial optimization of parameters against Eddy Cov. α , β , λ , and **PAR**₀

Jackknife delete-1

•
$$SE_{jack} = \left(\frac{n-1}{n}\sum(\widehat{\theta}_i - \widehat{\theta})^2\right)^{1/2}$$
 where $\widehat{\theta} = \sum_{i=1}^n \widehat{\theta}_i/n$

the average flux estimation excluding 1site at a time

- n=47 sites, EC data 2007
- EU Carbon uptake 0.96 ± 0.54 GtCy¹

	NEE [GtC/y]	NEE uncertainty [GtC/y]	Number of sites	Fraction of land area [%]
Evergreen forest	-0.165	0.039	16	16.5
Deciduous forest	-0.174	0.020	5	4.4
Mixed forest	-0.025	0.176	2	8.4
Open shrub	-0.201	-	1	13.8
Savanna	-0.012	-	0	0.3
Crop	-0.443	0.502	8	51.0
Grass	0.059	0.026	15	5.6
Total	0.960	0.536	47	100

Fossil fuel priors

- Fossil fuel signal need to be properly quantified for meaningfull biosphere flux optimization
- Edgar v4.1 at 0.1°
- IPCC category and fuel type differentiation
- Time factors applied to create hourly temporal resolution
- Emissions year to year variations scaled according to BP energy statistics at national level

Jena regional inversion system

TM3-STILT – two step inversion

- Input : Atmospheric observations, prior fluxes (biospheric, ocean, fossil fuel)
- TM3 global inversion 5° x 4°
- STILT regional inversion 0.25° x 0.25°
- State space: 0.5° resolution, 3hourly flux optimization

Inversion setup

- 16 stations
- Continuous and flask
- Synthetic obs. times according to real obs.

Data coverage

Model-data error in ppm

S	С	Μ	Т	UP
1.5	2.5	1.5	1.5	4

- S: Near shore
- C: Continental (surface)
- M: Continental (Mountain)
- T: Continental (Tall tower)
- UP: Urban polluted

Measurement error: 0.3 ppm

- Data driven error structure
- 30 days, 100 km error correlations
- Sensitivity tests on the error structure

We aim at:

- European carbon estimates
- Network assessment

- B1 case: Error inflation only to the spatio-temporal component (covariance matrix)
- S1 case: Error inflation by adding a bias term flat in time, respiration shape

Daily averaged concentration time series for Schauinsland

Kountouris et al., 2016a in preparation

Pseudo data inversion – Goodness of fit

- Good fitting performance
- Comparable performance for both error structures
- Larger flexibility in B1 (no bias term) → smaller residuals

Kountouris et al., 2016a in preparation

Kountouris et al., 2016a in preparation

Successfully retrieved fluxes at monthly and annual scales

• Case **S1** (with bias) results to lower posterior uncertainties

Pseudo data inversion – Country-scale C budget

- Successfully retrieved fluxes at monthly scales
- Significant correction also for badly constrained countries.

Kountouris et al., 2016a in preparation

Real data inversion 2007

Reasonable fine structure is revealed where an atmospheric constrain is provided

Need for better coverage – more data streams to constrain better the fluxes

Real data inversion 2007

Kountouris et al., 2016b in preparation

European sink ranges between 0.23 - 0.38 GtC y⁻¹

Real data inversion 2007

Kountouris et al., 2016b in preparation

European sink ranges between 0.23 - 0.38 GtC y⁻¹ 0.30 -0.49 GtC y⁻¹ up-scaled to Transcom region

Network assessment

- Assess ICOS network in terms of uncertainty reduction
- Measurement location impacts flux uncertainties
- Help decision makers to built optimal network

Monte Carlo method

• 40 ensemble members

- AHYY A Tower Ocean Ground Montain Urban ICOS1 ICOS2 ICOS2
- Each member contains flux and observation error realizations
- Retrieved uncertainty reduction at country and pixel scale, annual/seasonal
- 3 inversion systems (MPI, VUA, LSCE)
- Joint protocol
 - \checkmark Common domain
 - ✓ Same prior and observation uncertainties

Uncertainty Reduction assessment ICOS current

UR = 1 - Ups/Upr Ups = f(Upr, Uy, Transport)

Uncertainty Reduction assessment ICOS future

Kountouris et al., 2016c in preparation

- Data driven procedure from local to continental-scale to infer terrestrial fluxes
 - Prior fluxes : VPRM optimized at local scale using EC-data
 - > Post fluxes : Inversion at meso-scale using CO_2 mixing ratios
- Site selection for VPRM optimization can lead to significant biases
- Flux estimates can be successfully retrieved down to country and monthly scales
- Spatially resolved flux estimates suffer from possibly biased f.f. contribution
- The information gain is localized near atmospheric stations
- Data coverage must be increased to capture flux variability at higher resolution